DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

PoSIES: Populus in the Southeast for Integrated Ecosystem Services

April 4, 2023
Data Modeling and Analysis

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview - Background

- Short rotation woody crops like poplar (*Populus* spp.) are well positioned to support climate change mitigation and other ecosystem services
 - Renewable, carbon neutral energy particularly for aviation
 - Ecosystem service and carbon offset markets
 - Hardwood supply markets

Project Overview - Background

- Populus and its hybrids ...
 - Grow fast, woody structure allows for "storage" in the field
 - Can be established from cuttings to control and improve genetics
 - Will resprout after harvest in coppice production

Project Overview - Background

- Growth and productivity has a large role in the final cost of the feedstock
- Ecosystem services co-benefits could potentially be monetized to reduce final costs, but need to be verified
- Large scale Populus production should not have unintended ecological disservices

Project Overview - Risks

- Risks to productivity and ecosystem services co-benefits potentially include...
 - Variation in productivity based on site quality
 - Diseases like Septoria stem canker affect production
 - Ecosystem service markets may not develop as expected

Project Overview - Goals

- Determine ways to make poplar biofuels more cost competitive with fossil fuel energy sources (\$3.00 gasoline gallon equivalent)
 - Field test production methods to increase productivity of poplar in the Southeast
 - Measure ecosystem service provision and utilize ecosystem service markets to reduce the overall cost of poplar production
 - Test technologies to quickly estimate biomass and ecosystem services

1 – Approach: Quantifying and Increasing Production

Eight research sites planted throughout the

Southeast

Established between 2018 and 2022

- Production increased by...
 - Identifying genetically superior genotypes for the Southeast
 - Utilizing endophytic nitrogen fixing bacteria
 - Planting varieties in mixtures to better utilize site resources
- New production costs for Techno-Economic Analysis obtained from a Biomass Cost Calculator
 - Shuren R, Busby G and B Stanton. 2019. Biomass Production Cost Calculator https://s3.wp.wsu.edu/uploads/sites/2182/2020/04/BPCC-version-1.0.xlsx

1 – Approach: Ecosystem Services

 Determine belowground carbon storage for potential carbon markets

 Revenue to landowners used to update Techno-Economic Analysis calculations

1 – Approach: Improving data collection

- Test technologies to quickly estimate biomass and ecosystem services
 - LiDAR Light Detection and Ranging
 - Hyperspectral remote sensing
 - NIR –near infrared analysis of biomass and soil samples

1 – Approach: Ecosystem Disservices

Potential effects on

Wildlife biodiversity compared with other land cover types

Water use

Greenhouse gas emissions

1 – Approach: Stakeholders

- Stakeholder advisory panel includes...
 - Industry
 - Non-profits
 - Government agencies
 - Agencies representing landowners and farmers

 Yearly meetings and semi-annual email reports

2 – Progress and Outcomes – Timeline and Plan

		20	21			20	22			20	23			20	24		2025
Task	JFM	AMJ	JAS	OND	JFM												
Cutting acquisition																	
Site establishment																	
Field measurements																	
Coppice sites																	
Develop soil models																	
Develop biomass models																	
Collect aerial data																	
Develop TechnoEconomic analysis																	
Milestones																	
Quantify baseline conditions																	
Coppice stands and achieve 8Mg/ha/year biomass																	
Demonstrate 10% nitrate removal and 10% soil C accumulation																	
compared with ag.																	
Demonstrate 20% nitrate removal, 20% increase in soil C and 10%																	
reduction in CO ₂ emissions compared with ag.																	
Incorporate ecosystem services into a techno economic analysis and achieve 10% reduction in minimum fuel selling price																	

2 – Progress and Outcomes – Increasing productivity

2 – Progress and Outcomes – Increasing productivity

Endophytes and planting mixtures

2 – Progress and Outcomes – Ecosystem Services

Belowground carbon sequestration

2 – Progress and Outcomes – Ecosystem Services

Nitrogen and phosphate mitigation

2 – Progress and Outcomes – Improving Data Collection

Soils and biomass

Element	R²	RMSE
Ca (mg/kg)	0.92	157
K (mg/kg)	0.56	13.5
Mg (mg/kg)	0.67	9.9
P (mg/kg)	0.75	10.3
N (%)	0.67	0.03
C (%)	0.73	0.27

3 – Impact

Financial Impact of Study Results

- Increased productivity of the best performing cultural planting practices will reduce feedstock production costs by \$10-20/dry Mg for 2 - 3 year coppice cutting cycles compared to traditional practices
- Soil carbon potential benefit of \$4 9 per ha/yr based on a carbon offset payment of \$9 per ton CO₂
- Potential for water quality improvement and nitrate and phosphate payments, but markets are still developing.

Publications so far

- Renninger HJ, Pitts JP and RJ Rousseau. 2022. Comparisons of biomass, water use efficiency and water use strategies across five genomic groups of *Populus* and its hybrids. *Global Change Biology Bioenergy*. 15: 99-112. DOI: 10.1111/gcbb.13014. Impact factor: 5.957
- Stakeholders board members/Potential partnerships
 - Enviva Biomass New wood pellet facility in Lucedale, Mississippi
 - Finite Carbon Forest carbon offset company
 - Green Trees Intercrop eastern cottonwood (*P. deltoides*) and oaks (*Quercus* spp.) in the Lower Mississippi Alluvial Valley (6,040,000 trees planted so far)

Summary

- Our top performing genotypes and treatment plots achieved almost 20 Mg/ha/year of aboveground biomass production without fertilization or irrigation
 - New hybrid poplar genotypes outperformed most older eastern cottonwood genotypes
 - Endophytic bacteria aided production on a marginal site
 - Evidence that mixed genotype plantings can have greater yields than monocultures
 - Terrestrial LiDAR models predicted aboveground biomass with an R² of 0.9

Soil Carbon

- Increases of 0.4 to over 1 Mg/ha/yr in tree plantation sites
- Near infrared spectroscopy modeled soil carbon with an R² of 0.73 and RMSEC of 0.27%

Nutrient mitigation

- Mitigation of nitrate in shallow ground of over 20% compared with traditional row crop agriculture
- Mitigation of orthophosphate by about 35% compared with traditional row crop agriculture

Quad Chart Overview

Timeline

- 10/1/2020
- 3/31/2025

	FY22 Costed	Total Award
DOE Funding	(10/01/2021 – 9/30/2022)	\$2,035,602
Project Cost Share *	\$509,293	

TRL at Project Start: TRL at Project End:

Project Goal

Identify genetics and cultural practices of *Populus* genotypes that improve productivity and ecosystem service provision to reduce the final cost of bioenergy feedstocks.

End of Project Milestone

A 20% decrease in ground- and surfacewater nitrate, a 20% increase in soil carbon and a 10% reduction in soil CO_2 emissions to achieve a 10% reduction in the minimum fuel selling price relative to a \$3/GGE Techno-Economic Analysis

Funding Mechanism

DE-FOA-0002203 FY20 Bioenergy Technologies Multi-Topic FOA

Project Partners*

- University of Tennessee Knoxville
- Louisiana Tech University

²⁰